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1 Introduction

This paper continues our study of the first order bosonic string theory and completes the

results of [1]. We propose the formulation of string theory in non-trivial background, to

be hopefully an alternative to traditional approach (see e.g. [2–5]), based almost totally

on studying the two-dimensional sigma-models. The proposed in [1, 6] first-order string

theory is based on the perturbation of the “bare action” for (coupled to ghosts) bosonic

first-order free conformal theory

S0 =
1

2πα′

∫

Σ
d2z(pi∂̄Xi + pī∂X ī) (1.1)

which is independent of the target-space metric and requires only some local choice of the

target-space complex structure. The world-sheet fields {Xµ} =
{(

Xi,X ī
)}

, {pi} and

{pī} (with µ = 1, . . . ,D; i, ī = 1, . . . ,D/2) are sections of H0(Σ), H(1,0)(Σ) and H(0,1)(Σ)

correspondingly, being holomorphic (or anti-holomorphic) on the equations of motion. The

only nontrivial operator product expansions (OPE) for the theory (1.1) are

pi(z)Xj(z′) =
α′δj

i

z − z′
+ regular terms (1.2)
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together with their complex conjugated, and computation of all nontrivial correlation func-

tions on sphere in the theory (1.1) is therefore reduced to collection of correlators (1.2) by

application of the Wick theorem.

The free field theory action (1.1) can be naturally perturbed by the operators

Vg =
1

2πα′

∫

Σ
Og =

1

2πα′

∫

Σ
d2zgij̄pipj̄ (1.3)

with the X-dependent “coefficient functions” or target-space fields gij̄ = gij̄(X), as well as

Vµ =
1

2πα′

∫

Σ
Oµ =

1

2πα′

∫

Σ
d2zµj

ī
∂̄X īpj

Vµ̄ =
1

2πα′

∫

Σ
Oµ̄ =

1

2πα′

∫

Σ
d2zµ̄j̄

i∂Xipj̄ (1.4)

where µj

ī
= µj

ī
(X) (together with its complex conjugated µ̄ī

j = µ̄ī
j(X)), and

Vb =
1

2πα′

∫

Σ
Ob =

1

2πα′

∫

Σ
d2zbij̄∂Xi∂̄X j̄ (1.5)

where again bij̄ = bij̄(X). We shall use the “real” operator

Φ(z, z̄) = Oµ(z, z̄) + Oµ̄(z, z̄) = µj

ī
∂̄X īpj + µ̄j̄

i∂Xipj̄ (1.6)

In order for the operators (1.3), (1.4) and (1.6) to be well-defined as conformal primary

operators, one has to impose the transversality conditions for the background fields

∂ig
ij̄ = 0, ∂j̄g

ij̄ = 0

∂iµ
i
j̄ = 0, ∂j̄ µ̄

j̄
i = 0 (1.7)

which allow to get rid of the singularities, possibly arising from “internal” contractions

in (1.3), (1.4) and (1.6) or, in different words, the higher-order poles in the operator-product

expansions with the components of the stress-energy tensor T ∼ pi∂Xi and T̄ ∼ pī∂̄X ī in

the bare theory (1.1). In the BRST approach, to be also briefly discussed below, condi-

tions (1.7) follow directly from requiring the operators (1.3) and (1.4) to be BRST-closed.

The operators (1.3)–(1.5) (or (1.6)) are the only possible marginal (∆, ∆̄) = (1, 1)

primary operators in the first-order theory (1.1). In addition, one can also introduce the

holomorphic (1, 0)-currents

jv = piv
i(X), ∂iv

i = 0

jω = ωi(X)∂Xi (1.8)

(and their anti-holomorphic (0, 1)-conjugates), which generate the holomorphic change of

co-ordinates and gauge transformations (their anomalous operator algebra has been studied

in [6–9]). The non-holomorphic operators, similar to (1.8), can also arise when studying

generic non-holomorphic symmetries of the perturbed action [1]. We shall also see, how

– 2 –
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such structures arise in the operator algebra of the background operators (1.3)–(1.5) and

in the extra divergences, related to the anomalies of the currents (1.8).

Below we are going to find the conditions, when the operators (1.3)–(1.5) become

exactly marginal or can be raised up to the exponent and added to the free action (1.1).

In other words, this is equivalent to vanishing of their beta-functions in the perturbed

theory [1, 2, 10]. The quadratic (in background fields) contributions to these beta-functions

are given by the structure constants of the OPE’s of the primary operators (1.3)–(1.5) (see

appendix A), whose vanishing leads, for example, to the nonlinear equation [6]

gij̄∂i∂j̄g
kl̄ − ∂ig

kj̄∂j̄g
il̄ = 0 (1.9)

for the functions gij̄(X). Since the background field equations are generally highly nonlin-

ear, it is clear, that exact form of the beta-functions should be affected by certain polyvertex

contributions, when more than two vertex operators collide on world sheets. In order to

get such contributions explicitly, one needs to study the effective action beyond quadratic

level, or the multi-point correlation functions in the first-order theory (1.1).

In the present paper, we would like to concentrate mostly on the background equations

of motion for the target-space “Beltrami” fields1 µ = dX j̄µi
j̄

∂
∂Xi and µ̄ = dXiµ̄j̄

i
∂

∂X j̄ ,

keeping the other fields to be shut down for a while, or playing maximally a role of a

“spectator” or “probe” operators. In such case the vertex operators (1.4) and (1.6) can be

obviously considered as deforming the complex structure of the original bare theory (1.1),

and from generic target-space symmetry reasons one would expect that the corresponding

fields should satisfy the Kodaira-Spencer equations [13]

N i
k̄j̄

≡ ∂[k̄µ
i
j̄]
− µl

[k̄
∂lµ

i
j̄]

= 0

N̄ j̄
ik ≡ ∂[iµ̄

j̄
k] − µ̄l̄

[i∂l̄µ̄
j̄
k] = 0 (1.10)

which have an obvious sense of vanishing of the Nijenhuis tensor or curvatures for the

gauge fields µ = dX j̄µi
j̄

∂
∂Xi and µ̄ = dXiµ̄j̄

i
∂

∂X j̄ with the values in Lie algebra of the vector

fields in tangent bundle to the target manifold (see [14] for brief description of Kodaira-

Spencer theory and their important applications for topological strings). Below we are

going to derive these equations directly from computation of the correlation functions in

the first-order conformal field theory.

Let us immediately point out the most intriguing features and attractive outcomes of

solving this problem:

• The Kodaira-Spencer equations (1.10) are nonlinear and, in contrast to (1.9) con-

tain terms of different powers in the background Beltrami fields. From the point of

view of world-sheet theory it means that they result from considering not just the

simplest singularities of the correlators, or the OPE’s, but rather from the higher

singularities of the multipoint correlation functions with different numbers of the en-

tries. In particular, it allows to test some general hypothesis about relevance of the

1These fields in the context of Lagrangian field theory were discussed already in [11], the Beltrami

parametrization of the world-sheet geometry in string theory was discussed e.g. in [12].
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polyvertex structures in string theory, related to nontrivial boundary components of

the multipoint moduli spaces Mg,n of the world-sheet curves.

• Below we are going to compute the correlation functions in the first-order conformal

field theory, and study their (logarithmic) divergencies. We show, that vanishing of

the corresponding target-space coefficient functions correspond rather to a certain

bilinear combination of the Kodaira-Spencer equations (1.10). The exact form of this

combination was determined in [1] from standard computation of the effective action,

or more strictly — of the beta-function for the operator (1.5). We demonstrate now,

how the quadratic and cubic pieces of this expression can be extracted from direct

computation of the 3-point and 4-point correlation functions. We compute these

contributions from the co-ordinate representations for these correlators, making a first

step towards the systematic study of the co-ordinate beta-functions as integrals over

the world-sheet moduli spaces in string theory, and we discuss also extra singularities

of these correlators. Finally, we turn to the interpretation of the computed beta-

functions within the BRST approach and show how our results can be partially

reproduced in terms of generalized Maurer-Cartan equation.

2 The perturbed correlation functions

To study the co-ordinate approach to the beta-functions consider, for example, the per-

turbed one-point correlation function of the “probe operator” (1.3)

〈Og(x)〉t = 〈Og(x) exp

(

t

∫

Σ
Φ

)

〉 =
∑

n≥0

tn

n!

∫

Σ
d2z1 . . .

∫

Σ
d2zn〈Og(x)Φ(z1) . . . Φ(zn)〉 (2.1)

where averaging in the r.h.s. is understood in the sense of path integral with the free

action (1.1). The calculation of the r.h.s. of (2.1) includes the integration of the multipoint

correlators

〈Og(x)Φ(z1) . . . Φ(zn)〉 (2.2)

over the regularized domain Σ⊗n, e.g.

|zi − x| > ǫ, |zi − zj | > ǫ

∀i, j = 1, . . . , n (2.3)

To study the boundaries of the moduli spaces in detail, one should in principle consider

different ǫ’s, or even to take ǫ = ǫ(z, z̄) in these inequalities. It is also sometimes useful to

introduce the IR cutoff R and discuss the correlators (2.2) in the regime, when |zi| ≪ R, ∀i,

while |x| ≫ R, what corresponds to extracting the UV beta-function divergences from (2.1).

We shall be interested in what follows only in the terms arising at logarithmic in

UV cutoff ǫ singularities, when integrating the correlation functions (2.2). We are going to

demonstrate, that vanishing of such terms gives, in particular, the expected from alternative

approach [1] contributions to the squared Kodaira-Spencer equations (3.9), imposed onto

the set of target-space Beltrami differentials µ and µ̄. It is essential, that the Kodaira-

Spencer equations are nonlinear, and in order to get them one should carefully take into

account the contribution of different multipoint functions from the set (2.2).

– 4 –
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2.1 3-point function

In order to get a hint of what should we expect from such computation, consider the first

nontrivial order, namely the correlator (2.2) for n = 2

〈Og(x)Φ(y)Φ(z)〉 = 〈Og(x)Oµ(y)Oµ̄(z)〉 + 〈Og(x)Oµ̄(y)Oµ(z)〉 (2.4)

The direct computation of the free field correlator in the r.h.s. of (2.4) gives rise to the result

C2 =
1

2
〈Og(x)Φ(y)

∫

Σ
d2zΦ(z)〉 =

gij̄B
(2)

ij̄

|x − y|2
∫

Σ

d2z

π

1

|x − z|2|y − z|2 (2.5)

The integral in (2.5), which is basically the “volume” of the group SL(2, C) of global

transformations on sphere, when computed over the domain (2.3) Dǫ(x, y) = {|z − x| >

ǫ, |z−y| > ǫ} ⊂ C in the complex plane contains the logarithmic divergence (for the details

of the calculation of the integrals see appendix B)

∫

Dǫ(x,y)

d2z

π

1

|x − z|2|y − z|2 ≃ 2

|x − y|2 log
|x − y|2

ǫ2
(2.6)

The rest integration over y, omitted in (2.5) is not essential: if introducing the IR cutoff

the integrated singularity (2.6) can be just replaced by

C2 ≈
gijB

(2)

ij

|x|4 log
R2

ǫ2

∫

|y|<R

d2y

π
(2.7)

The coefficient at the logarithmic singularity (2.5), (2.6), (2.7) is proportional to the func-

tion

gij̄B
(2)

ij̄
= gkk̄∂[iµ̄

j̄

k]
∂[k̄µ

i
j̄] (2.8)

which has an obvious sense of the squared linearized Kodaira-Spencer equations (1.10).

The structure (2.8) arises by straightforward direct computation of the free-field correla-

tion functions coming from (2.5)

〈Og(x)Oµ̄(y)Oµ(z)〉 =
〈gij̄(x) pk̄µ̄

k̄
i (y) pkµ

k
j̄
(z)〉

(x − y)2(x̄ − z̄)2
+

〈gij̄pj̄(x) µ̄k̄
i (y) pkµ

k
k̄
(z)〉

(x − y)2(ȳ − z̄)2
+

+
〈gij̄pipj̄(x) µ̄k̄

k(y) µk
k̄
(z)〉

(y − z)2(ȳ − z̄)2
+

〈gij̄pi(x) pk̄µ̄
k̄
k(y) µk

j̄
(z)〉

(y − z)2(x̄ − z̄)2
(2.9)

due to vanishing of the one-point functions of quantum fields 〈∂X〉 = 〈∂̄X〉 = 0. Comput-

ing further the r.h.s. of (2.9) one has to take into account the transversality (1.7) and the

rule, allowing integration by parts over the target-space zero modes.

Strictly speaking, instead of gkk̄∂[iµ̄
j̄

k]∂[k̄µ
i
j̄]

one should write a target-space integral

∫

dDX(0)gkk̄(X(0))∂[iµ̄
j̄
k](X

(0))∂[k̄µ
i
j̄](X

(0)) (2.10)

– 5 –
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over the zero modes X(0) of the X-fields, and consider the compact target, or the target-

space fields being coefficients functions of the operators (1.3) and (1.4) vanishing at the

space-time “infinity”, what allows integration by parts in (2.10). Together with the

transversality constraints (1.7) this bring us to (2.4) and its generalizations below. The

computation of the 3-point function (2.4) is almost equivalent to the calculation of the op-

erator product expansion of two operators Φ (see appendix A for details) with its further

projection onto the operator Og, being in this sense equivalent to the computation of the

quadratic contribution into the beta-function of the operator Ob [1]. The integration by

parts and transversality allows however to drop off the total derivatives in the OPE (A.4),

and therefore the coefficient in front of the logarithmic singularity in (2.5) gives exactly

the desired term (2.8).

The singularity (2.7) can be compensated by the Bij̄-type counterterm

δO
(1)
b = log

ǫ2

µ2
B

(2)

ij̄
∂Xi∂̄X j̄ (2.11)

so that the renormalized correlator becomes UV-finite in this order

〈Og(x)

∫

d2z

π
δO

(1)
b (z)〉+1

2
〈Og(x)

∫

d2z1Φ(z1)

∫

d2z2Φ(z2)〉∼
gij̄B

(2)

ij̄

|x|4 log
R2

µ2

∫

|z|<R

d2z

π
(2.12)

Since Kodaira-Spencer equations (1.10) are nonlinear, the natural question now is whether

the multipoint correlation functions complete the expression B
(2)

ij̄
in (2.8) to the squared

Kodaira-Spencer equations in their exact form. It is quite instructive to discuss now, how

the next order B
(3)

ij̄
arises from the four-point contribution. This is already not very trivial

computation, requiring special care, when considering the integrals over the world-sheet

moduli space, and we consider it in next section.

2.2 4-point function: the free field correlator

In the next order for (2.1), (2.2) one gets the following contributions

〈Og(x)Φ(y)Φ(z)Φ(w)〉 = 〈Og(x)Oµ̄(y)Φ(z)Φ(w)〉 + c.c. = 〈Og(x)Oµ̄(y)Oµ(z)Oµ(w)〉 +

+〈Og(x)Oµ̄(y)Oµ̄(z)Oµ(w)〉+〈Og(x)Oµ̄(y)Oµ(z)Oµ̄(w)〉 + c.c.

(2.13)

which now reduces to computation and integration (2.1) of the free-field correlation func-

tions

〈Og(x)Oµ̄(y)Oµ(z)Oµ(w)〉 =
〈gij̄pi(x) µ̄k̄

k∂Xk(y) µl
j̄
pl(z) µr

k̄
pr(w)〉

(x̄ − z̄)2(ȳ − w̄)2
+

+
〈gij̄pi(x) µ̄k̄

k∂Xk(y) µl
k̄
pl(z) µr

j̄
pr(w)〉

(x̄ − w̄)2(ȳ − z̄)2

≡ F (x, y; z,w) + F (x, y;w, z) (2.14)

– 6 –
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The straightforward computation of (2.14) (which again uses only the operator product

expansions of the “fundamental” world-sheet fields (1.2) with their complex conjugated,

and integration by parts over the zero modes, like in (2.10)) gives rise now to the result

F (x, y; z,w) =
gij̄

(x̄ − z̄)2(ȳ − w̄)2





µl
j̄

(

µk
k̄
∂k∂[lµ̄

k̄
i] + ∂iµ

k
k̄
∂[lµ̄

k̄
k]

)

(x − z)(x − w)(y − z)(y − w)
+

+
∂[lµ̄

k̄
i]µ

k
k̄
∂kµ

l
j̄

(x − y)(x − w)(y − z)(z − w)
+

∂[iµ̄
k̄
l]µ

k
j̄
∂kµ

l
k̄

(x − y)(x − z)(y − w)(z − w)
+

+
∂iµ

k
k̄
∂k

(

µ̄k̄
l µ

l
j̄

)

(x − w)2(y − z)2
+

∂iµ
k
j̄
∂k

(

µ̄k̄
l µ

l
k̄

)

(x − z)2(y − w)2
−

µ̄k̄
i ∂kµ

l
j̄
∂lµ

k
k̄

(x − y)2(z − w)2



 =

=
gij̄

(x̄−z̄)2(ȳ−w̄)2





B
(3)

ij̄

(x−y)(x−w)(y−z)(z−w)
+

B̂
(3)

ij̄

(x−z)(x−w)(y−z)(y−w)

+
∂iµ

k
k̄
∂k

(

µ̄k̄
l µ

l
j̄

)

(x − w)2(y − z)2
+

∂iµ
k
j̄
∂k

(

µ̄k̄
l µ

l
k̄

)

(x − z)2(y − w)2
−

µ̄k̄
i ∂kµ

l
j̄
∂lµ

k
k̄

(x − y)2(z − w)2



 (2.15)

where the last equality holds due to an identity

1

(x − z)(x − w)(y − z)(y − w)
− 1

(x − y)(x − w)(y − z)(z − w)
+

+
1

(x − y)(x − z)(y − w)(z − w)
= 0 (2.16)

The structure gij̄B
(3)

ij̄
= gij̄∂[lµ̄

k̄
i]µ

k
k̄
∂kµ

l
j̄

reminds exactly what should arise at third order

in the expansion of the squared Kodaira-Spencer equations (1.10), while the second term

in the r.h.s. of (2.15) is given by

gij̄B̂
(3)

ij̄
= gij̄µl

j̄

(

µk
k̄
∂k∂[lµ̄

k̄
i] + ∂iµ

k
k̄
∂[lµ̄

k̄
k] + ∂lµ

k
k̄
∂[kµ̄

k̄
i]

)

=

= gij̄µl
j̄
∂l

(

µk
k̄
∂[kµ̄

k̄
i]

)

+ gij̄∂iµ
l
j̄

(

µk
k̄
∂[kµ̄

k̄
l]

)

= −gij̄
(

µl
j̄
∂lwi + wl∂iµ

l
j̄

)

=

= wi

(

∂kg
ij̄µk

j̄
− gkj̄∂kµ

i
j̄

)

= wiv
i (2.17)

for (cf. with the formulas (A.2) and (A.6) for OPE’s, see appendix A)

v
i = µk

k̄
∂kg

ik̄ − ∂kµ
i
k̄
gkk̄

wi = ∂[iµ̄
k̄
k]µ

k
k̄

(2.18)

valid modulo transversality constraints (1.7) and target-space integration by parts (2.10).

3 Divergences in the 4-point function

Only the coefficients at the terms with gij̄B
(3)

ij̄
and gij̄B̂

(3)

ij̄
= wiv

i can give rise to the

logarithmic divergences, while other are either finite or divergent as powers. There is a lot

– 7 –
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Figure 1. The |x| → ∞ limit 1

|x|4 I3 of the first integrand in (3.1) gives rise to a triangle loop,

producing the logarithmic divergency.

of arguments, why the power divergences can be thrown away from many different angles

of view (see e.g. [2, 16]). We are not going to discuss this now, and turn instead directly

to the logarithmically divergent integrals.

The naive direct calculation shows (see details in appendix B) that the logarithmically

divergent contribution has the following form

C3 =
1

3!

(

3
∏

i=1

∫

Σ

d2zi

π

)

〈Og(x)Φ(z1)Φ(z2)Φ(z3)〉 =

=
1

3!

∫

Σ⊗3

d2y

π

d2z

π

d2w

π

(

gij̄B
(3)

ij̄

(x̄ − z̄)2(ȳ − w̄)2(x − y)(x − w)(y − z)(z − w)
+

+
wiv

i

(x̄ − z̄)2(ȳ − w̄)2(x − z)(x − w)(y − z)(y − w)

)

≈
2gij̄B

(3)

ij̄
+ wiv

i

|x|4 log
R2

ǫ2

∫

|y|<R

d2y

π
+ c.c (3.1)

and comes from the two first terms in the r.h.s. of (2.15). The first part of this contribution

looks exactly as an expected cubic piece of the squared Kodaira-Spencer equations (1.10).

However, the naive computation also shows that there exists also a logarithmically divergent

piece, proportional to the pairing v
i
wi, with v and w from (2.18). Let us now analyze the

origin of these two contributions in detail.

Remember first, that the integrals in (3.1) are divergent and should be properly reg-

ularized, as in section 2.1, both in the UV and IR regimes. The result for the correlation

function (3.1) contains all possible divergences, arising in this way. Since the role of

the probe operator Og(x) is completely different from the rest when studying the beta-

functions, in order to get the latter one should pay attention to the structure of potential

divergences at |x| → ∞. It can be easily found, that two logarithmically divergent integrals

behave quite in a different way.

The first integrand

I3 =

∫ ∫

d2z

π

d2w

π

1

(z − y)(w − z)(w̄ − ȳ)2
∼
∫

d2z

π

1

|z − y|2 ∼ log
R2

ǫ2
(3.2)
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Figure 2. The tadpole 1

|x|4 Î3, arising in the |x| → ∞ limit of the second integrand in (3.1).

proportional to the desired contribution gij̄B
(3)

ij̄
, can be described by a triangle loop (in

configuration space!) (see figure 1), which being integrated itself diverges logarithmically.

However, this is not the case of the second integrand, whose form in this limit is

depicted at the figure 2. The divergent tadpole gives rise to the power divergency, to be

killed after the angle integration as itself, but producing later the less (logarithmically)

divergent contribution

Î3 =

∫

d2z

π

1

z − y

∫

d2w

π

1

(w − y)(w̄ − ȳ)2
∼ log

R2

ǫ2
(3.3)

when coupled to the rest of the integrand in (3.3).

More detailed analysis of the origin of these divergences can be found in appendix C.

The logarithmic divergence of I3 can be separated from that of Î3 when carefully analyzing

the integration domains, leading to these divergences. A direct computation in regularized

theory shows, that the desired contribution into I3 is saturated by UV domain, while

the logarithmic divergence of Î3 really comes from the IR region. Of course, these words

should be pronounced themselves with great care: since we are dealing with conformal

theory the UV and IR domains are related by modular transformations, and therefore

when studying the correlation functions it is not possible to distinct strictly these two

sources of singularity. We have observed already, that these two divergences are in fact

mixed by the identity (2.16), which is however violated in the regularized theory.

All these arguments indeed suggest, that the first logarithmic singularity B
(3)

ij̄
should

be combined with contribution B
(2)

ij̄
from the 3-point function in order to obtain the exact

form of the squared Kodaira-Spencer equation. This divergency on the other hand is equiv-

alent to the computation of the beta-function of the operator (1.5), as already discussed in

section 2.1. This beta-function has been computed in [1], studying the logarithmic diver-

gences in the effective action, (see also various issues of this procedure e.g. in [3, 4, 15]).

Decomposing the would-sheet fields into the fast and slow (or quantum and classical)

parts X → Xcl +
√

α′X and p → pcl+
√

α′p, and expanding the perturbed Lagrangian (1.1)

up to the second order one gets

L = L0 + Φ = Lcl + α′
(

pi∂̄X̃i + piU
i
j̄
X̃ j̄ + piW

i
j X̃

j + c.c
)

+ o(α′) (3.4)

where X̃i = Xi + µi
k̄
(Xcl)X

k̄, and

M i
j =

(

δi
j − (µµ̄)ij

)−1
(3.5)
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The vertices

U i
j̄

= N i
k̄l̄

M̄ k̄
j̄
(Xcl)∂̄X l̄

cl (3.6)

(where the components of the Nijenhuis tensor are defined in (1.10)) lead to the only

logarithmically divergent contribution in the effective action

Γdiv ∼ U i
j̄
Ū j̄

i

∫

d2q

qq̄
(3.7)

The logarithmically divergent integrals in (3.7) lead to renormalization of the operator (1.5)

δbij̄ ∼ log ǫ · Bij̄ (3.8)

where the beta-function of the b-field is

Bij̄ = −N l
k̄j̄

N̄ l̄
kiM

k
l M̄ k̄

l̄
≡ B

(2)

ij̄
+ B

(3)

ij̄
+ B̄

(3)

ij̄
+ O(µ4) =

= −∂[kµ̄
k̄
i]∂[k̄µ

k
j̄] + ∂[kµ̄

k̄
i]µ

l
[k̄∂lµ

i
j̄] + ∂[k̄µ

k
j̄]µ̄

l̄
[k∂l̄µ̄

k̄
i] + O(µ4) (3.9)

and obviously vanishes on solutions to (1.10). Expansion in the equation (3.9) contains

explicitly the pieces B
(2)

ij̄
and B

(3)

ij̄
, computed above as target-space coefficients in front

of logarithmically divergent parts of 3-point and 4-point correlation functions respectively.

The result (3.9) is an exact one-loop beta function [1], since there are no higher-loop

contributions, when computed by the background field method. It does not mean, that the

result should be identically the same in any other scheme of calculations, and it does not

imply certainly, that all divergences of the correlation function (3.1) are reduced to (3.9).

Hence, let us finally point out, how the “wrong divergence” (3.13) can be possible seen

in the effective action. The vertices

W i
j = ∂̄X j̄

cl

(

∂jµ
i
j̄(Xcl) − N i

k̄j̄
µ̄k̄

sM
s
j (Xcl)

)

(3.10)

in (3.4) could be perhaps neglected, if the current jv from (1.8) is not anomalous: they can

produce only the linearly divergent tadpole diagrams, where the divergency is killed by the

angle integration. However, since ∂̄〈jv〉 = 1
2π

R(2)∂iv
i, the presence of vertices (3.10) in the

Lagrangian leads to creation of the terms

W i
j 〈piX̃

j〉 ∼ ∂̄X j̄
clN

i
k̄j̄

µ̄k̄
sM

s
j (Xcl) = ∂̄X j̄

clN
i
k̄j̄

µ̄k̄
i (Xcl) + O(µ4) (3.11)

These are the extra terms to be related to the higher singularities in the operator product

expansions and giving rise to extra singularities in the correlation functions.

It is not amusing also, that the coefficient at (3.3) is proportional to the higher-order

singularity in the operator product expansion (A.4) of two Φ operators (see appendix A for

details). In fact, it is coupled with a similar higher-order singularity in the OPE of Φ with

Og (A.5), (A.6). The detailed discussion of the role of such terms goes beyond the scope of

this paper, but we would like to note, that they are directly related with the “anomalous”

contributions (3.11) to the effective action. Of course, in this order (quadratic in operators

Φ) one gets only the linear part of the full Nijenhuis tensor (1.10), coupled to dXcl in (3.11).
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Indeed, an important fact is that one can rewrite

wi = ∂[iµ̄
k̄
k]µ

k
k̄

= N̄ k̄
ikµ

k
k̄

+ O(µ3) (3.12)

i.e. the extra divergency is still proportional to the Kodaira-Spencer equations (1.10) up

to the cubic in µ terms. Therefore, this extra contribution

v
i
wi = v

iN̄ k̄
ikµ

k
k̄

+ O(µ4) (3.13)

still vanishes on the Kodaira-Spencer equations modulo quartic in µ terms. These quartic

in µ terms follow only from the 5-point function 〈Og(x)
(∫

Σ d2zΦ(z)
)4〉. It is easy to see,

that relevant structures indeed appear during its computation, though the exact analysis of

the 5-point function (which certainly contains more divergent contributions) goes beyond

the scope of this paper.

4 BRST approach

It has been already proposed in [1, 6] that the background equations of motion can be

encoded within the BRST approach by a sort of generalized Maurer-Cartan equation

QBRST (V ) ≡ QBRST V + m2(V, V ) + m3(V, V, V ) + . . . = 0 (4.1)

where mn(V, . . . , V ) stay for certain polyvertex structures, related directly to the multipoint

correlation functions, partially have been computed above. This constraint can be thought

as nonlinear deformation of the initial BRST operator QBRST = Q + Q̄, defined in terms

of the world-sheet conformal theory

Q = QM + Qgh =

∫

dz

(

cTM +
1

2
cTgh

)

(4.2)

to be considered together with its complex conjugated, where

T = TM + Tgh =
1

α′
pi∂Xi − 2∂cb + c∂b (4.3)

is the holomorphic stress-tensor of the first order theory (1.1) coupled to the anticommuting

[bn, cm]+ = δn+m,0 ghost system b(z) =
∑

k bkz
−k−2 and c(z) =

∑

ckz
−k+1 of bosonic

string. If operator φ that does not contain ghosts has conformal dimension (∆, ∆̄) then

QBRST (cc̄φ) = ∂̄c̄cc̄(∆̄ − 1)φ + ∂ccc̄(∆ − 1)φ (4.4)

and QBRST just indicates the marginality of the operator cc̄φ.

The physical spectrum of the first-order theory (1.1) can be identified with the BRST

cohomologies: equation (4.1) in the leading order (QBRST V = 0), when considering the

vertex operator as perturbation. For example

QBRST (cc̄gij̄pipj̄) =
α′

2

(

∂2ccc̄∂ig
ij̄pj̄ + ∂̄2c̄cc̄∂j̄g

ij̄pi

)

(4.5)

– 11 –
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and

QBRST

(

cc̄piµ
i
j̄ ∂̄X j̄

)

=
α′

2
∂2ccc̄∂iµ

i
j̄ ∂̄X j̄ (4.6)

justify that operators (1.3) and (1.4) are primary upon the transversality constraints (1.7),

while QBRST

(

cc̄bij̄∂Xi∂̄X j̄
)

= 0 identically. These operators are defined modulo gauge

transformations V ∼ V + QBRST U with parameters

U = − 1

α′
cαipi +

1

α′
cβi∂Xi + c.c. (4.7)

giving rise to the pure gauge or BRST-exact terms

QBRST U = −1

2
c∂2c∂iα

i +
1

α′
cc̄(∂j̄α

ipi − ∂j̄βi∂Xi)∂̄X j̄ + c.c. (4.8)

i.e. the background fields µ and b are defined modulo

µi
j̄ ∼ µi

j̄ + ∂j̄α
i

bij̄ ∼ bij̄ − ∂j̄βi − ∂iβj̄ (4.9)

and it also follows from (4.8), that the transversality ∂iα
i = 0 should be assumed

in (4.7), (4.9).

Beyond the leading order, one should rather study the full equation (4.1), step by

step in perturbation theory. The second term in (4.1) in order to ensure the nilpotency

of the deformed BRST operator QBRST should be consistent with the Leibnitz rule for

undeformed QBRST . This does not fix it uniquely, but one can at least naively try

m2(U, V ) =
1

2

∮

|z|=ǫ

(

dzU (1,0)(z) + dz̄U (0,1)(z)
)

V (0,0)(0) (4.10)

For example, if U = V , with the operator Φdz ∧ dz̄ = V (1,1) given by (1.6), or

V (0,0) = cc̄
(

piµ
i
j̄ ∂̄X̄ j̄ + p̄īµ̄

ī
j∂Xj

)

V (1,0) = b−1V
(0,0) = c̄

(

piµ
i
j̄
∂̄X̄ j̄ + p̄īµ̄

ī
j∂Xj

)

(4.11)

formula (4.10) gives rise to

m2(V, V ) = 2(∂̄c̄cc̄+∂ccc̄)

(

f

ǫ2
+ B̃

(2)

ij̄
∂Xi∂̄X̄ j̄

)

+
1

2
∂2ccc̄∂j̄f ∂̄X̄ j̄ +

1

2
∂̄2c̄cc̄∂if∂Xi (4.12)

where f = µ̄ī
jµ

j

ī
= Tr µ̄µ, and

B̃
(2)

ij̄
= −∂[kµ̄

k̄
i]∂[k̄µ

k
j̄] +

1

2
∂i

(

µ̄k̄
k∂[j̄µ

k
k̄]

)

+
1

2
∂j̄

(

µk
k̄
∂[iµ̄

k̄
k]

)

≡

≡ B
(2)

ij̄
+

1

2

(

∂iwj̄ + ∂j̄wi

)

(4.13)

Equation (4.1) in the next order (where V (2) is deformation of the original V = V (1))

QBRST V (2) + m2(V, V ) = 0 (4.14)
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shows that the expression (4.12) can be considered modulo the BRST-exact terms. Choos-

ing V (2) in the form

V (2) = cc̄
f

ǫ2
+

(

cc̄

α′
piµ

(2)i

j̄
∂̄X j̄ + ∂2cc

f

4
+

1

2
c(∂c + ∂̄c̄)wi∂Xi + c.c.

)

(4.15)

and substituting it together with (4.12) into (4.14), one gets

QBRST V (2)+m2(V, V )= ∂̄c̄cc̄B
(2)

ij̄
∂Xi∂̄X j̄ +

1

2
∂2ccc̄

(

∂iµ
(2)i

j̄
−wj̄

)

∂̄X j̄ + c.c. = 0 (4.16)

so that it requires the vanishing of the beta-function (3.9) at given order B
(2)

ij̄
= 0 together

with wj̄ = ∂[j̄µ
k
k̄]

µ̄k̄
k = ∂iµ

(2)i

j̄
. Due to the first condition ∂[j̄µ

i
k̄]

= 0 (together with its

complex conjugated) and therefore µ(2) in (4.15) can be chosen trivial.

Equation (4.14) itself is defined modulo the symmetry transformation

V (2) → V (2) + QBRST U (2) − m2(V,U) − m2(U, V ) (4.17)

where it is convenient to choose U (2) in the following form

U (2) = − c

α′

(

α(2)i − 1

2
αk̄µi

k̄

)

pi +
c̄

α′

(

α(2)j̄ − 1

2
αkµ̄j̄

k

)

p̄j̄ (4.18)

Then the transformation (4.17) leads in particular to

µ
(2)i

j̄
∼ µ

(2)i

j̄
+ ∂j̄

(

α(2)i − αk̄µi
k̄

)

+ αk∂kµ
i
j̄
+ αk̄∂k̄µ

i
j̄
− µk

j̄
∂kα

i + µi
k̄
∂j̄α

k̄ (4.19)

which completes (in a given order of perturbation expansion) the gauge transformation of

the Beltrami fields from (4.9) to the full nonlinear form (see [1])

µi
j̄ → µi

j̄ + ∂j̄v
i + vk∂kµ

i
j̄ + vk̄∂k̄µ

i
j̄ + µi

k̄
∂j̄v

k̄ − µk
j̄ ∂kv

i − µi
k̄
µk

j̄ ∂kv
k̄ − gik̄blj̄∂k̄v

l =

= µi
j̄ + ∂j̄v

i + {v, µ}i
j̄ + vk̄∂k̄µ

i
j̄ + µi

k̄

(

∂j̄ − µk
j̄ ∂k

)

vk̄ − gik̄blj̄∂k̄v
l (4.20)

upon the identification

v(2)i = α(2)i − αk̄µi
k̄

(4.21)

This formula with already mentioned transversality condition ∂iα
(2)i = 0 for the U -fields is

also consistent with the transversality constraint for parameter v of the full gauge transfor-

mation. The exact form of the symmetry transformation (4.20) can be restored studying

all higher operations from the equation (4.1).

5 Discussion

In this paper we have computed the correlation functions in the first-order conformal field

theory, which hopefully has a sense of expansion of bosonic string theory in singular back-

grounds. This theory depends only on the (local) choice of target-space complex structure

and we have studied this dependence by perturbing the bare action with the Beltrami

vertex operator (1.6), and computing its correlations with the “probe” operator (1.3).
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We have derived the Kodaira-Spencer equations (1.10) for the target-space Beltrami

differentials from computation of the correlation functions on punctured spheres. The

“co-ordinate” beta-functions arise in such approach as certain integrals over the moduli

spaces of punctured world sheets of the first-order string theory. We have demonstrated

how the contribution to the squared Kodaira-Spencer equations comes from the 3-point

and 4-point correlators for two or three operators (1.6) correspondingly and a single

spectator “operator” (1.3).

We have studied the logarithmic divergences, arising in these correlation functions. For

the 3-point function this divergency immediately reproduces the quadratic contribution

to the beta-function of the dual to probe operator (1.5), being essentially equivalent to

the computation of this contribution from OPE’s of the perturbing fields [2, 10]. This

beta-function has the form of the squared Kodaira-Spencer equations, and the computation

of the 3-point function reproduced it in the first nonvanishing order. In order to complete

this derivation, and to get full Kodaira-Spencer equation, as required for example by

target-space symmetries of the theory, we have computed the 4-point function, again with

one operator being the probe operator (1.3). The divergency of the 4-point function gives

rise to a necessary contribution to the squared Kodaira-Spencer equations (3.9), which

is cubic in Beltrami fields and completes their derivation in given order. We have also

analyzed an extra divergency in the 4-point function, and demonstrated that it origin

comes rather from IR, than from UV regime, which however could be hardly distinguished

in conformal field theory. Nevertheless, in given order this extra divergency also vanishes

on Kodaira-Spencer equations (1.10).

Since the nonlinear equations for the background fields arise in this approach from the

correlation functions with different number of operators (the so called polyvertex structures,

already discussed in this context in [6, 17]), and contain integrals over the moduli spaces

of punctured world sheets with different numbers of punctures, it is natural to understand

them also in the context of BRST approach. This is close to already discussed in similar

context structures of the string field theory (see e.g. [18, 19]). We have proposed how

the first nontrivial polyvertex structure can look like, which turns the condition of BRST-

closeness into nonlinear generalized Maurer-Cartan equation (4.1). We have analyzed this

equation in the first nontrivial order and demonstrated that its analysis is consistent with

other approaches. Generally one may even expect some solvable nonlinear equations for

the “co-ordinate” beta-functions, arising when studying the Maurer-Cartan equation, and

we are planning to return to these problems elsewhere.
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A Operator product expansions

In the free theory with the first-order action (1.1) all computations of the correlation func-

tions can be performed using the operator product expansions (1.2) of the basic fields.

From the point of view of renormalization theory [2, 10] the computation of the operator

product expansions of the primary operators corresponds exactly to the quadratic in cou-

pling terms in the beta functions, expressed through the structure constants of the operator

algebra. As was stated in [6], the computation of the operator product expansion of two

operators (1.3) leads to the beta function of the operator (1.3) itself and requiring this

beta-function to vanish, or equivalently the operator (1.3) to be exactly marginal, one gets

the nonlinear equation (1.9) for the “metric” components gij̄ .

For the purposes of this paper let us consider the operator product expansions of

Oµ = piµ
i
ī
∂̄X ī and Oµ̄ = pj̄µ̄

j̄
j∂Xj . We shall always keep only the terms with maximally

two target-space derivative, since the other ones will be suppressed in α′. Expanding at

z → 0 one gets

Oµ(z)Oµ̄(0) ∼
µ̄j̄

iµ
i
j̄

|z|4 +
∂Xk

zz̄2

(

∂k(µ̄
j̄
iµ

i
j̄) − wk

)

+

+
∂̄X k̄

z2z̄
wk̄ +

∂Xk ∂̄X k̄

|z|2
(

∂k(µ̄
j̄
i∂[k̄µ

i
j̄]) + B

(2)

kk̄

)

+ . . . (A.1)

with

B
(2)

kk̄
= ∂[iµ̄

j̄
k]∂[k̄µ

i
j̄]

wj̄ = ∂[j̄µ
k
k̄]µ̄

k̄
k, wi = ∂[iµ̄

k̄
k]µ

k
k̄

(A.2)

while

Oµ(z)Oµ(0) ∼ − ∂̄X ī∂̄X j̄

z2
∂iµ

j

j̄
∂jµ

i
ī +

pi∂̄X ī∂̄X j̄

z
µj

[̄i
∂jµ

i
j̄] + . . . (A.3)

We see that the last formula does not contain at all the “potentially logarithmic” non

holomorphic terms 1/|z|2, so the properties of the product of two operators (1.6) will be

totally determined by (A.2). The most singular contribution in (A.2) defines the trace of

Zamolodchikov metric f = Tr µ̄µ = µ̄j̄
iµ

i
j̄

(which in this or that way drops out from the
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interesting formulas), while the term at 1/|z|2 (up to the total derivative!) gives rise to the

O(|µ|2) contribution to the beta function of the b-field or (1.5) operator.

It follows from (A.1) and (A.3) that the OPE of the operator (1.6) with itself acquires

the following form

Φ(z)Φ(0) =
2µ̄j̄

iµ
i
j̄

|z|4 +
∂k

(

µ̄j̄
iµ

i
j̄

)

∂Xk

zz̄2
+

∂k̄

(

µ̄j̄
iµ

i
j̄

)

∂̄X k̄

z2z̄
+

2B̃
(2)

ij̄
∂Xi∂̄X j̄

|z|2 + . . .

B̃
(2)

ij̄
= B

(2)

ij̄
+

1

2

(

∂iwj̄ + ∂j̄wi

)

(A.4)

while the OPE of Φ with Og (1.3) is

Φ(z)Og(0) =
piv

i

zz̄2
+

pīv
ī

z2z̄
+

1

|z|2
(

pif
i
d̄
∂̄X̄ d̄ + p̄īf̄

ī
d∂Xd

)

+ . . . (A.5)

where

v
i = µk

k̄
∂kg

ik̄ − ∂kµ
i
k̄
gkk̄

f i
j̄

= ∂[j̄µ
k
l̄]∂kg

il̄ − gkl̄∂k∂[j̄µ
i
l̄] (A.6)

is contribution, together with its complex conjugated, to the renormalization of the opera-

tors (1.4), while renormalization of the operator (1.5) is suppressed in α′. Finally, the OPE

Og(z)Ob(0) =
gij̄bij̄

|z|4 +
gij̄∂j̄bil̄∂̄X l̄

z2z̄
+

gij̄∂ibkj̄∂Xk

zz̄2
+

+
1

|z|2
(

∂k∂l̄g
ij̄bij̄ +gij̄∂i∂j̄bkl̄+∂kg

ij̄∂j̄bil̄+∂l̄g
ij̄∂ibkj̄

)

∂Xk∂̄X l̄+. . . (A.7)

which we have not been interested in at vanishing bare bij̄ = 0.

B Calculation of the integrals

Let us start with the integral, arising during the computation of both 3-point and 4-point

functions (2.4) and (3.1)

I(x − y)=

∫

Dǫ(x,y)

d2z

π

1

|z−x|2|z−y|2 =
i

2π

1

|x−y|2
∫

Dǫ(x,y)
d log

z−x

z−y
∧ d log

z̄−x̄

z̄−ȳ
(B.1)

By Stokes theorem it reduces to the boundary integral

I(x − y) =
i

2π

1

|x − y|2
∮

∂Dǫ(x,y)
log

z̄ − x̄

z̄ − ȳ
d log

z − x

z − y
(B.2)

where the contour ∂Dǫ(x, y), surrounding the cut between the points x and y is passed

counter-clockwise. The integral therefore reduces to
∮

C−+Cx+C++Cy

log
z̄ − x̄

z̄ − ȳ
d log

z − x

z − y
=

= 2πi

∫ x−ǫ

y+ǫ

d log
z − x

z − y
+

∫ π

−π

log
ǫe−iφ

x̄ − ȳ
idφ −

∫ 2π

0
log

ȳ − x̄

ǫe−iφ
idφ =

= 2πi

(

2 log
ǫ

y − x
+ 2 log

ǫ

ȳ − x̄

)

= −2πi · 2 log
|x − y|2

ǫ2
(B.3)
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so that one gets for (B.1)

I(x − y) =
2

|x − y|2 log
|x − y|2

ǫ2
, |x − y| > ǫ (B.4)

Instead of (B.1) one can consider its Γ-regularization

I(α, β)=

∫

d2z

π

1

|z−x|2β |z−y|2α
=

1

|x−y|2(α+β−1)

∫

d2ξ

π

1

|ξ|2α|ξ−1|2β

1

2
< α, β < 1

(B.5)

The last integral (the Shapiro-Virasoro amplitude) is taken as Gaussian after an obvious

substitution
1

|ζ|2γ
=

1

Γ(γ)

∫ ∞

0

dt

t
tγe−t|ζ|2 (B.6)

and results in

I(α, β)=
1

|x−y|2(α+β−1)

Γ(1−α)

Γ(α)

Γ(1−β)

Γ(β)

Γ(α+β−1)

Γ(2−α−β)

1

2
< α, β < 1 (B.7)

In the limit α, β → 1 one can take

I(1 − ǫ, 1 − δ) =
1

|x − y|2(1−ǫ−δ)

Γ(ǫ)

Γ(1 − ǫ)

Γ(δ)

Γ(1 − δ)

Γ(1 − ǫ − δ)

Γ(ǫ + δ)
=

=
ǫ,δ→0

(

1

ǫ
+

1

δ

)

1

|x−y|2 +

(

2+
ǫ

δ
+

δ

ǫ

)

1

|x−y|2 log |x−y|2+O(ǫ, δ) (B.8)

and the result (B.4) is reproduced only upon ǫ2 + δ2 = 0.

Let us also calculate

J(x − y) =
1

x̄ − ȳ

∫

Dǫ(x,y)

d2z

π

1

|z − x|2(z − y)
=

z=y+(x−y)(ξ+ 1

2)

=
1

|x − y|2
∫

Dǫ/|x−y|( 1

2
,− 1

2)

d2ξ

π

ξ + 1
2

∣

∣ξ − 1
2

∣

∣

2 ∣
∣ξ + 1

2

∣

∣

2 (B.9)

Due to the symmetry of the integration domain, one immediately gets that this integral is

exactly half of the original integral (B.1)

J(x − y) =
1

2

1

|x − y|2
∫

Dǫ/|x−y|( 1

2
,− 1

2)

d2ξ

π

1
∣

∣ξ − 1
2

∣

∣

2 ∣
∣ξ + 1

2

∣

∣

2 =
1

|x − y|2 log
|x − y|2

ǫ2
(B.10)

C UV and IR contributions to the logarithmic divergence of the 4-point

function

In order to study the divergences carefully, it is useful to rewrite the regularized inte-

gral (3.2) (as well as (3.3)) in the form

I3 =

∫

|z1|<R,|z2|<R,|z3|<R

3
∏

i=1

d2zi

π
θ(|z12| − ǫ)θ(|z13| − ǫ)θ(|z23| − ǫ)F (z1, z2, z3) + c.c (C.1)

– 17 –
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and extract divergent pieces by acting on the (C.1) by the −ǫ d
dǫ

− ǫ
d

dǫ
I3 = − ǫ

∑

i<j

dI3

dǫ

∣

∣

∣

∣

∣

∣

zij

(C.2)

and leaving only the constant terms as ǫ → 0, where, say

− ǫ
dI3

dǫ

∣

∣

∣

∣

z12

= ǫ

∫

|z1|<R,|z2|<R,|z3|<R

3
∏

i=1

d2zi

π
δ(|z12|−ǫ)θ(|z13|−ǫ)θ(|z23|−ǫ)F (z1, z2, z3) (C.3)

Introducing new variables

z3 = z, z3 − z2 = u, z3 − z1 = v (C.4)

one obtains

− ǫ
dC3

dǫ

∣

∣

∣

z12

= ǫ

∫

Σ∗

d2z

π

d2v

π

d2u

π
δ(|u − v| − ǫ)F (z − u, z − v, z) (C.5)

where

Σ∗ : |z − v| < R, |z − u| < R, |z| < R, |u| > ǫ, |v| > ǫ. (C.6)

and, therefore

−ǫ
dI3

dǫ
=ǫ

∫

Σ∗

d2z

π

d2v

π

d2u

π
δ(|u−v|−ǫ) [F (−u,−v, 0) + F (−u, 0,−v) + F (0,−v,−u)] (C.7)

for their sum (C.2). Since the integrand F (z1, z2, z3) in (3.2) (as well as F̂ (z1, z2, z3)

in (3.3)) is translational invariant F (z − u, z − v, z) = F (−u,−v, 0), and there is also

rotational invariance:

F (eiφz1, e
iφz2, e

iφz3) = F (z1, z2, z3) (C.8)

one of the integrations is easily performed. Indeed, from the delta-function constraint one

concludes that

v = u − ǫeiφ (C.9)

but using rotational invariance we can put

v = u − ǫ (C.10)

while the angle integral is just 2π. Hence,

− ǫ
dI3

dǫ
=2ǫ2

∫

Σǫ,R

d2z

π

d2u

π
[F (−u,−u+ǫ, 0)+F (−u, 0,−u+ǫ) + F (0,−u+ǫ,−u)] (C.11)

where Σǫ,R is the domain (after additional change of the variable z → u − z) defined by

the following inequalities

Σǫ,R : |z − ǫ| < R, |z| < R, |z − u| < R, |u| > ǫ, |u − ǫ| > ǫ (C.12)
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ε

ε

R

3

21

Γ

ΓΓ 0

Figure 3. The set of integration contours: Γ1 and Γ2 for the UV contribution, and Γ3 for the

contribution in IR regime.

For the integral (3.2)

F (z1, z2, z3) =
1

z2
13

1

z12

1

z23
(C.13)

therefore

ǫ
dI3

dǫ
= −2

∫

Σǫ,R

d2z

π

d2u

π

[

2ǫ

u2(u − ǫ)
− 1

u(u − ǫ)

]

=

= 2

∫

|z|<R, |z−ǫ|<R

d2z

π

∮

Γ1∪Γ2∪Γ3

du

2πi

[

2ǫ

u(u − ǫ)
+

u

u(u − ǫ)

]

(C.14)

where contours

Γ1 : u = ǫeiφ, φ ∈
[

π

3
,
5π

3

]

Γ2 : u = ǫ + ǫeiφ, φ ∈
[

4π

3
,
2π

3

]

Γ3 : u = z − Reiφ, φ ∈ [0, 2π] (C.15)

are depicted at figure 3.

An important thing is, that for triangular loop and the integral (3.2), the integration

over Γ3 or the contribution from the IR domain vanishes at ǫ → 0. It means, that the result

for the integral (3.2) is purely from UV, and corresponds therefore to the beta-function of

the operator (1.5). To compute it, one first notices, that Γ2 is union of two intervals

Γ2 =

[

4π

3
, 2π

]

∪
[

0,
2π

3

]

(C.16)
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and after the changes of the angle variables φ → φ + π on the first interval and φ → φ− π

on the second, the integral over Γ2 transforms into the integral over Γ1, giving rise to the

final result

ǫ
dI3

dǫ
= 2

∫

|z|<R, |z−ǫ|<R

d2z

π

5π
3
∫

π
3

dφ

2π

2e2iφ + 2eiφ + 2e−iφ − 1

eiφ − 1
= 2

∫

|z|<R

d2z

π
+ o(ǫ) (C.17)

since

5π
3
∫

π
3

dφ

2π

2e2iφ + 2eiφ + 2e−iφ − 1

eiφ − 1
=

[

2

iπ
cos φ +

5

4πi
log 2(cos φ − 1) +

3

4π
φ

]∣

∣

∣

∣

5π
3

π
3

=1 (C.18)

The situation is completely different for the integral (3.3). In this case

F̂ (z1, z2, z3) =
1

z2
13

1

z12z13
(C.19)

and therefore

ǫ
dÎ3

dǫ
= −2

∫

Σǫ,R

d2z

π

d2u

π

[

ǫ

u2(u − ǫ)
+

1

ǫu

]

=

= 2

∫

|z|<R, |z−ǫ|<R

d2z

π

∮

Γ1∪Γ2∪Γ3

du

2πi

[

ǫ

u(u − ǫ)
− u

ǫu

]

(C.20)

Now performing the same trick and taking into account that last term can contribute when

we integrate over the contour Γ3 we obtain:

ǫ
dÎ3

dǫ
= 2

∫

|z|<R, |z−ǫ|<R

d2z

π







5π
3
∫

π
3

dφ

2π

e2iφ + e−iφ

eiφ − 1
−
∮

Γ3

du

2πi

u

ǫu






(C.21)

The first integral in the r.h.s.

5π
3
∫

π
3

dφ

2π

e2iφ + e−iφ

eiφ − 1
=

1

iπ
[cos φ + log 2(cos φ − 1)]

∣

∣

∣

∣

5π
3

π
3

= 0 (C.22)

vanishes, while the second - totally saturated by the IR Γ3 contribution - gives rise to the

expected result

ǫ
dÎ3

dǫ
= −2

∫

|z|<R, |z−ǫ|<R

d2z

π

z

ǫ
=

∫

|z|<R

d2z

π
+ o(ǫ) (C.23)

or the expected half of the result (C.17), though we have seen that the nature of the

divergence in Î3 is totally different from that of I3.
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